Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

A third polymorph of N.N'-bis(pyridin-2yl)benzene-1,4-diamine

Barbara Wicher and Maria Gdaniec*

Faculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland Correspondence e-mail: magdan@amu.edu.pl

Received 21 October 2011; accepted 25 October 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.094; data-to-parameter ratio = 13.2.

A third polymorph of the title compound, $C_{16}H_{14}N_4$, has been obtained. The molecule adopts a non-planar conformation with an *E* configuration at the two partially double *exo* $C \rightarrow N$ bonds of the 2-pyridylamine units. Like in the triclinic form [Bensemann et al. (2002). New J. Chem. 26, 448-456], the recognition process between 2-pyridylamine units takes place through formation of a cyclic $R_2^2(8)$ hydrogen-bond motif, leading to the creation of tapes parallel to [001].

Related literature

For the structures of the orthorhombic and triclinic polymorphs of N,N'-di(pyridin-2-yl)benzene-1,4-diamine, see: Bensemann et al. (2002).

Experimental

Crystal data $C_{16}H_{14}N_4$ $M_r = 262.31$

Monoclinic, $P2_1/c$ a = 7.2534 (2) Å

b = 20.8270 (6) Å c = 9.0681 (3) Å $\beta = 106.746 \ (4)^{\circ}$ V = 1311.79 (7) Å³ Z = 4

Data collection

Oxford Diffraction SuperNova	10413 measured reflections
diffractometer	2398 independent reflections
Absorption correction: multi-scan	2221 reflections with $I > 2/s(I)$
(CrysAlis PRO; Agilent, 2010)	$R_{\rm int} = 0.019$
$T_{\min} = 0.799, T_{\max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	181 parameters
$wR(F^2) = 0.094$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.11 \text{ e } \text{\AA}^{-3}$
2398 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N7 - H7N \cdot \cdot \cdot N16^{i}$ $N14 - H14N \cdot \cdot \cdot N2^{ii}$	0.90 0.90	2.25 2.12	3.1423 (13) 3.0141 (14)	175 175

Symmetry codes: (i) x, y, z + 1; (ii) x, y, z - 1.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2657).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Bensemann, I., Gdaniec, M. & Połoński, T. (2002). New J. Chem. 26, 448-456. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Cu $K\alpha$ radiation $\mu = 0.65 \text{ mm}^{-1}$

 $0.2 \times 0.2 \times 0.05 \text{ mm}$

T = 295 K

supplementary materials

Acta Cryst. (2011). E67, o3095 [doi:10.1107/S1600536811044539]

A third polymorph of N,N'-bis(pyridin-2-yl)benzene-1,4-diamine

B. Wicher and M. Gdaniec

Comment

The compounds bearing two 2-pyridylamine groups separated by linkers can adopt either *E*, *E*, *Z*, *Z* or *E*, *Z* forms depending on the configuration of the partially double *exo* C \cdots N bond of the 2-pyridylamine unit. In crystals the molecules in the *E*, *E* form tend to build one-dimensional networks *via* $R^2_2(8)$ synthons generated between self-complementary 2-pyridylamine groups. In turn, the *Z*, *Z* form generates the C(4) catemer motif that can lead to the formation of one-, two- and three-dimensional frameworks (Bensemann *et al.*, 2002). These compounds are known to exhibit conformational polymorphism and for *N*,*N*-di(pyridin-2-yl)benzene-1,4-diamine two polymorphic forms were identified. In the orthorhombic form (Pbca, *Z*=0.5), obtained by crystallization from acetonitrile, the molecules are nonplanar and adopt the *Z*,*Z* form. Hydrogen bonds between 2-pyridylamine groups generate catemeric motifs that assemble molecules into a two-dimensional framework. In the triclinic *P*T polymorph, obtained by crystallization from methanol, there are two symmetry independent molecules, each in the *E*,*E* form and located around inversion center. These molecules form tapes *via* strongly nonplanar $R^2_2(8)$ motif generated by N—H···N hydrogen bonds (Bensemann *et al.*, 2002).

Recently, during an attempt to cocrystallize N,N-di(pyridin-2-yl)benzene-1,4-diamine with pyrazine from 2-butanone, a new monoclinic polymorph of N,N-di(pyridin-2-yl)benzene-1,4-diamine was obtained. When crystallization was repeated from 2-butanone without addition of pyrazine the triclinic polymorph was formed.

In the new monoclinic polymorph the molecules adopt the *E*,*E* form and are assembled into tapes *via* strongly non-planar $R^2_2(8)$ hydrogen-bond motif. The overall shape of the tapes and their crystal packing are different from the arrangement found in the triclinic polymorph. As shown in Fig. 2a, the hydrogen-bonded tapes extended along [0 0 1] are grouped into pairs, with no specific interactions occurring between the two tapes, and these pairs of tapes are further arranged in a herring-bone manner (Fig. 2b).

The three polymorphs of N,N-di(pyridin-2-yl)benzene-1,4-diamine have identical or very similar melting points: 478–479 K for the orthorhombic and triclinic polymorphs and 479 K for the monoclinic form. The calculated crystal densities are also similar: 1.335, 1.314 and 1.328 g cm⁻³ for orthorhombic, triclinic and monoclinic forms, respectively.

Experimental

N,N-Di(pyridin-2-yl)benzene-1,4-diamine was prepared according to the published procedure (Bensemann *et al.*, 2002). N,N-Di(pyridin-2-yl)benzene-1,4-diamine (0.03 g, 0.11 mmol) and pyrazine (0.01 g, 0.11 mmol) were dissolved in 5 ml of 2-butanone and placed in a glass vial. After a few days colourless, plate-shaped crystals with a melting point of 479 K were obtained.

Refinement

H atoms of the N—H groups were located in difference electron-density maps. N—H bond lengths were standardized to 0.90 Å and $U_{iso}(H)$ values were constrained to $1.2U_{eq}(N)$. All other H atoms were initially identified in difference maps but were placed at calculated positions with C—H = 0.93 Å, and were refined as riding on their carrier atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. : The asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level.

Fig. 2. : Crystal packing in the monoclinic polymorph of the title compound: (*a*) a pair of hydrogen bonded tapes extended along $[0\ 0\ 1]$ and (*b*) herring-bone packing of the pairs of tapes (one pair is show with a black rhomboid). Hydrogen bonds are shown with dashed lines.

N,N'-bis(pyridin-2-yl)benzene-1,4-diamine

Crystal data	
$C_{16}H_{14}N_4$	F(000) = 552
$M_r = 262.31$	$D_{\rm x} = 1.328 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 479 K
Hall symbol: -P 2ybc	Cu K α radiation, $\lambda = 1.54178$ Å
a = 7.2534 (2) Å	Cell parameters from 6262 reflections
b = 20.8270 (6) Å	$\theta = 2.1-75.8^{\circ}$
c = 9.0681 (3) Å	$\mu = 0.65 \text{ mm}^{-1}$
$\beta = 106.746 \ (4)^{\circ}$	T = 295 K
V = 1311.79 (7) Å ³	Plate, colourless
Z = 4	$0.2\times0.2\times0.05~mm$

Data collection

Oxford Diffraction SuperNova diffractometer	2398 independent reflections
Radiation source: Nova Cu X-ray Source	2221 reflections with $I > 2/s(I)$
mirror	$R_{\rm int} = 0.019$
ω scans	$\theta_{\text{max}} = 68.2^\circ, \ \theta_{\text{min}} = 6.4^\circ$
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)	$h = -8 \rightarrow 8$
$T_{\min} = 0.799, T_{\max} = 1.000$	$k = -25 \rightarrow 25$
10413 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.094$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0478P)^{2} + 0.2155P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2398 reflections	$(\Delta/\sigma)_{max} < 0.001$
181 parameters	$\Delta \rho_{max} = 0.11 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N2	0.18091 (14)	0.15267 (5)	0.53715 (10)	0.0434 (2)
N7	0.34929 (14)	0.13813 (5)	0.36249 (10)	0.0453 (2)
H7N	0.4266	0.1142	0.4380	0.054*
N14	0.53458 (15)	0.12536 (5)	-0.19925 (11)	0.0521 (3)
H14N	0.4314	0.1319	-0.2811	0.063*
N16	0.63876 (14)	0.06275 (5)	-0.36845 (10)	0.0458 (2)
C1	0.18087 (15)	0.15794 (5)	0.38962 (12)	0.0382 (2)
C3	0.02222 (18)	0.17053 (6)	0.57328 (14)	0.0500 (3)
H3	0.0216	0.1663	0.6752	0.060*
C4	-0.13952 (18)	0.19473 (7)	0.46964 (16)	0.0572 (3)
H4	-0.2462	0.2071	0.5000	0.069*
C5	-0.13771 (18)	0.19995 (7)	0.31846 (16)	0.0581 (3)
H5	-0.2449	0.2161	0.2448	0.070*
C6	0.02097 (17)	0.18144 (6)	0.27640 (13)	0.0486 (3)
H6	0.0224	0.1844	0.1744	0.058*
C8	0.39192 (15)	0.13618 (5)	0.22059 (12)	0.0387 (3)
C9	0.34861 (17)	0.18587 (5)	0.11355 (13)	0.0435 (3)
H9	0.2842	0.2220	0.1332	0.052*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C10	0.40017 (17)	0.18215 (6)	-0.02162 (12)	0.0445 (3)
H10	0.3685	0.2157	-0.0920	0.053*
C11	0.49825 (15)	0.12933 (5)	-0.05437 (12)	0.0406 (3)
C12	0.54745 (16)	0.08080 (5)	0.05517 (13)	0.0425 (3)
H12	0.6177	0.0457	0.0380	0.051*
C13	0.49368 (16)	0.08396 (5)	0.18909 (13)	0.0419 (3)
H13	0.5262	0.0505	0.2597	0.050*
C15	0.67958 (16)	0.08914 (5)	-0.22815 (12)	0.0418 (3)
C17	0.7754 (2)	0.02598 (6)	-0.39897 (15)	0.0539 (3)
H17	0.7477	0.0068	-0.4955	0.065*
C18	0.9526 (2)	0.01483 (7)	-0.29741 (16)	0.0603 (4)
H18	1.0408	-0.0122	-0.3228	0.072*
C19	0.99619 (18)	0.04509 (7)	-0.15578 (15)	0.0574 (3)
H19	1.1173	0.0402	-0.0855	0.069*
C20	0.85928 (17)	0.08235 (7)	-0.11991 (14)	0.0506 (3)
H20	0.8858	0.1028	-0.0249	0.061*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N2	0.0485 (5)	0.0489 (5)	0.0360 (5)	0.0011 (4)	0.0174 (4)	0.0017 (4)
N7	0.0482 (5)	0.0582 (6)	0.0316 (5)	0.0106 (4)	0.0148 (4)	0.0050 (4)
N14	0.0529 (6)	0.0744 (7)	0.0294 (5)	0.0220 (5)	0.0123 (4)	0.0021 (4)
N16	0.0504 (6)	0.0555 (6)	0.0349 (5)	0.0066 (4)	0.0177 (4)	0.0011 (4)
C1	0.0431 (6)	0.0385 (5)	0.0343 (5)	-0.0050 (4)	0.0132 (4)	-0.0027 (4)
C3	0.0539 (7)	0.0573 (7)	0.0456 (6)	-0.0034 (5)	0.0253 (5)	-0.0006 (5)
C4	0.0427 (6)	0.0708 (9)	0.0636 (8)	-0.0016 (6)	0.0242 (6)	-0.0007 (6)
C5	0.0386 (6)	0.0760 (9)	0.0563 (8)	-0.0020 (6)	0.0081 (5)	0.0052 (6)
C6	0.0438 (6)	0.0638 (7)	0.0365 (6)	-0.0053 (5)	0.0090 (5)	-0.0002 (5)
C8	0.0403 (6)	0.0454 (6)	0.0313 (5)	0.0006 (4)	0.0117 (4)	-0.0013 (4)
C9	0.0497 (6)	0.0445 (6)	0.0392 (6)	0.0108 (5)	0.0174 (5)	0.0014 (5)
C10	0.0505 (6)	0.0488 (6)	0.0352 (6)	0.0122 (5)	0.0139 (5)	0.0080 (5)
C11	0.0409 (6)	0.0511 (6)	0.0302 (5)	0.0054 (5)	0.0108 (4)	-0.0014 (4)
C12	0.0465 (6)	0.0415 (6)	0.0411 (6)	0.0078 (5)	0.0150 (5)	-0.0023 (4)
C13	0.0474 (6)	0.0413 (6)	0.0377 (6)	0.0046 (5)	0.0134 (5)	0.0051 (4)
C15	0.0471 (6)	0.0488 (6)	0.0335 (5)	0.0057 (5)	0.0178 (5)	0.0048 (4)
C17	0.0630 (8)	0.0606 (7)	0.0455 (7)	0.0103 (6)	0.0273 (6)	-0.0004 (5)
C18	0.0604 (8)	0.0689 (8)	0.0618 (8)	0.0204 (6)	0.0337 (7)	0.0123 (7)
C19	0.0445 (7)	0.0763 (9)	0.0538 (7)	0.0105 (6)	0.0180 (6)	0.0175 (6)
C20	0.0489 (7)	0.0660 (8)	0.0373 (6)	0.0036 (5)	0.0131 (5)	0.0023 (5)

Geometric parameters (Å, °)

1.3372 (15)	C8—C13	1.3895 (15)
1.3422 (13)	C8—C9	1.3916 (15)
1.3771 (14)	C9—C10	1.3829 (15)
1.4079 (13)	С9—Н9	0.9300
0.9001	C10-C11	1.3879 (16)
1.3793 (14)	C10—H10	0.9300
	1.3372 (15) 1.3422 (13) 1.3771 (14) 1.4079 (13) 0.9001 1.3793 (14)	1.3372 (15) C8—C13 1.3422 (13) C8—C9 1.3771 (14) C9—C10 1.4079 (13) C9—H9 0.9001 C10—C11 1.3793 (14) C10—H10

N14—C11	1.4148 (14)	C11—C12	1.3898 (16)
N14—H14N	0.9000	C12—C13	1.3799 (15)
N16—C15	1.3385 (14)	C12—H12	0.9300
N16—C17	1.3427 (15)	C13—H13	0.9300
C1—C6	1.3974 (16)	C15—C20	1.3947 (16)
C3—C4	1.3706 (19)	C17—C18	1.3682 (19)
С3—Н3	0.9300	C17—H17	0.9300
C4—C5	1.3790 (18)	C18—C19	1.383 (2)
С4—Н4	0.9300	C18—H18	0.9300
С5—С6	1.3681 (18)	C19—C20	1.3713 (18)
С5—Н5	0.9300	С19—Н19	0.9300
С6—Н6	0.9300	C20—H20	0.9300
C3 - N2 - C1	117 93 (10)	С8—С9—Н9	119.6
$C_1 = N_2 = C_1$	127 71 (9)	C9-C10-C11	121 35 (10)
C1 = N7 = C0	114.8	C9_C10_H10	119.3
C8_N7_H7N	115.3	$C_{11} - C_{10} - H_{10}$	119.3
$C_{0} = N_{1} = M_{1} = M_{1}$	124 37 (9)	C10-C11-C12	117.74 (10)
C15 N14 H14N	115.1	$C_{10} = C_{11} = C_{12}$	117.74(10) 110.28(10)
C13 = N14 = H14N	115.1	C_{10} C_{11} N_{14}	119.28 (10)
C15 N16 C17	117.12 (10)	$C_{12} = C_{11} = N_{14}$	122.89(10) 120.00(10)
$\frac{1}{10} \frac{1}{10} \frac$	117.13(10) 114.00(10)	$C_{12} = C_{12} = C_{11}$	120.99 (10)
$N_2 = C_1 = N/$	114.09(10) 121.52(10)	$C_{13} - C_{12} - H_{12}$	119.5
$N_2 = C_1 = C_0$	121.32(10) 124.20(10)	C12 = C12 = C12	119.5
N/-CI-C6	124.39 (10)	C12 - C13 - C8	121.32 (10)
N2-C3-C4	124.16 (11)	C12C13H13	119.3
N2—C3—H3	117.9	C8—C13—H13	119.3
C4—C3—H3	117.9	N16-C15-N14	115.68 (10)
C3—C4—C5	117.34 (12)	N16-C15-C20	122.22 (10)
С3—С4—Н4	121.3	N14—C15—C20	122.07 (10)
С5—С4—Н4	121.3	N16—C17—C18	124.33 (12)
C6—C5—C4	120.31 (12)	N16—C17—H17	117.8
С6—С5—Н5	119.8	C18—C17—H17	117.8
С4—С5—Н5	119.8	C17—C18—C19	117.84 (12)
C5—C6—C1	118.73 (11)	C17—C18—H18	121.1
С5—С6—Н6	120.6	C19—C18—H18	121.1
С1—С6—Н6	120.6	C20-C19-C18	119.38 (12)
C13—C8—C9	117.73 (10)	С20—С19—Н19	120.3
C13—C8—N7	118.69 (10)	C18—C19—H19	120.3
C9—C8—N7	123.44 (10)	C19—C20—C15	118.97 (12)
C10—C9—C8	120.81 (10)	C19—C20—H20	120.5
С10—С9—Н9	119.6	C15—C20—H20	120.5
C3—N2—C1—N7	-179.60 (10)	C15—N14—C11—C10	157.24 (12)
C3—N2—C1—C6	0.15 (16)	C15—N14—C11—C12	-26.30 (18)
C8—N7—C1—N2	178.25 (10)	C10-C11-C12-C13	2.54 (17)
C8—N7—C1—C6	-1.49 (19)	N14—C11—C12—C13	-173.97 (11)
C1—N2—C3—C4	-0.97 (18)	C11—C12—C13—C8	-1.25 (17)
N2—C3—C4—C5	0.9 (2)	C9—C8—C13—C12	-1.05 (17)
C3—C4—C5—C6	-0.1 (2)	N7—C8—C13—C12	-176.94 (10)
C4—C5—C6—C1	-0.7 (2)	C17—N16—C15—N14	-178.51 (11)

supplementary materials

N2 C1 C6 C5	0.65 (19)	C17 N16 C15 C20	262(18)
N2-CI-CO-C3	0.03 (18)	C1/-N10-C13-C20	5.02 (18)
N7—C1—C6—C5	-179.63 (12)	C11—N14—C15—N16	145.45 (11)
C1—N7—C8—C13	-139.63 (12)	C11—N14—C15—C20	-36.68 (18)
C1—N7—C8—C9	44.73 (17)	C15—N16—C17—C18	-1.0 (2)
C13—C8—C9—C10	2.02 (17)	N16-C17-C18-C19	-2.2 (2)
N7—C8—C9—C10	177.69 (11)	C17—C18—C19—C20	2.9 (2)
C8—C9—C10—C11	-0.71 (18)	C18—C19—C20—C15	-0.5 (2)
C9—C10—C11—C12	-1.57 (18)	N16-C15-C20-C19	-2.90 (19)
C9-C10-C11-N14	175.07 (11)	N14-C15-C20-C19	179.36 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N7—H7N····N16 ⁱ	0.90	2.25	3.1423 (13)	175
N14—H14N···N2 ⁱⁱ	0.90	2.12	3.0141 (14)	175
Symmetry codes: (i) $x, y, z+1$; (ii) $x, y, z-1$.				

Fig. 1

